Quiz 8: L'Hôpital's and Curve Sketching

Throughout this entire quiz, we will be examining the function

$$
f(x)=\frac{x^{2}+e^{x}}{e^{x}}
$$

Please box your answers.
Problem 1 (1 point). State the domain of f. All real numbers
Problem 2 (1 point). Find the x and y intercepts of $y=f(x)$ (if they exist). (0,1) is y-intercept. There is no x-intercept because $x^{2}+e^{x}>0$ always.

Problem 3 (1 point). This function is even / odd / neither (circle one). It is periodic / not periodic (circle one).
Problem 4 (4 points). Find all asymptotes of $y=f(x)$, if there are any. If you compute a limit, make sure to show your work. Solution: There cannot be any vertical asymptotes because the domain of f is \mathbb{R}. Let a denote either ∞ or $-\infty$:

$$
\begin{array}{rlr}
\lim _{x \rightarrow a} f(x) & =1+\lim _{x \rightarrow a} \frac{x^{2}}{e^{x}} & \\
& =1+\lim _{x \rightarrow a} \frac{2 x}{e^{x}} & \text { indeterminate form } \\
& =1+\lim _{x \rightarrow a} \frac{2}{e^{x}} & \\
& = \begin{cases}1 & \text { if } a=\infty, \\
\infty & \text { if } a=-\infty\end{cases} &
\end{array}
$$

So there is a horizontal asymptote $y=1$ as x tends to ∞. There are no other asymptotes.
Elaboration-not needed on quiz. If $y=m x+b$ were an asymptote, we should see either

$$
\lim _{x \rightarrow \infty}(f(x)-(m x+b))=0 \quad \text { or } \quad \lim _{x \rightarrow-\infty}(f(x)-(m x+b))=0
$$

I'll leave it to you to check (with L'Hôpital's Rule) that the only possibility is

$$
\lim _{x \rightarrow \infty}(f(x)-(0 \cdot x+1))=0
$$

which is the horizontal asymptote we found above. In other words-there are no slant asymptotes.

Problem 5 (4 points). Find all critical points (x, y) on the graph of $y=f(x)$. Using the first or second derivative test, determine whether they are local minima, local maxima, or neither.

Solution: Differentiating gives

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(2 x+e^{x}\right)\left(e^{x}\right)-\left(x^{2}+e^{x}\right)\left(e^{x}\right)}{\left(e^{x}\right)^{2}} \quad \text { quotient rule; remember that } \frac{d}{d x} e^{x}=e^{x} \\
& =\frac{2 x-x^{2}}{e^{x}} \\
& =\frac{x(2-x)}{e^{x}} .
\end{aligned}
$$

The derivative always exists, so to find critical points we need only consider when $f^{\prime}(c)=0$. This happens when $c=0,2$.
If you chose to use the first derivative test: Examining the expression $\frac{x(2-x)}{e^{x}}$, we see that the denominator is always positive, while the sign of the numerator depends on x. To be specific:

$$
f(x) \text { is } \begin{cases}\text { negative } & \text { if } x<0 \\ \text { positive } & \text { if } 0<x<2 \\ \text { negative } & \text { if } 2<x\end{cases}
$$

Hence:
$(0,1)$ is a local minimum, $\left(2, \frac{4}{e^{2}}+1\right)$ is a local maximum, f is increasing on $(0,2)$, and f is decreasing on
$(-\infty, 0)$ and $(2, \infty)$.

If you chose to use the second derivative test: Differentiating again gives

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{(2-2 x) e^{x}-\left(2 x-x^{2}\right)\left(e^{x}\right)}{\left(e^{x}\right)^{2}} & \text { quotient rule } \\
& =\frac{x^{2}-4 x+2}{e^{x}} & \text { simplify }
\end{aligned}
$$

and we see that $f^{\prime \prime}(0)=2 / e^{2}>0$ while $f^{\prime \prime}(2)=-2 / e^{2}<0$. We conclude again that $(0,1)$ is a local minimum and $\left(2, \frac{4}{e^{2}}+1\right)$ is a local maximum. Then you can reason out the intervals on which f is increasing/decreasing by using the fact that f is continuous everywhere and that these are the only critical points.
(a) State the intervals on which f is increasing: see above
(b) State the intervals on which f is decreasing: see above
(Don't worry about open vs. closed brackets for the intervals here.)
Problem 6 (4 points). Report the x-coordinate of each inflection point of f. (You do not need to compute the y-coordinate.) Solution: I computed $f^{\prime \prime}$ in the solution above. It always exists; we just need to examine where $f^{\prime \prime}(c)=0$. The quadratic formula tells us that this happens when

$$
c=\frac{4 \pm \sqrt{16-8}}{2}=2 \pm \sqrt{2} .
$$

Note that the parabola $x^{2}-4 x+2$ opens upwards. So:

$$
f^{\prime \prime}(x) \text { is } \begin{cases}\text { positive } & \text { if } x<2-\sqrt{2}, \\ \text { negative } & \text { if } 2-\sqrt{2}<x<2+\sqrt{2}, \\ \text { positive } & \text { if } 2+\sqrt{2}<x\end{cases}
$$

Because f changes concavity at $2-\sqrt{2}$ and $2+\sqrt{2}$, these are (the x-coordinates of) the inflection points.
(a) State the open intervals on which f is concave up: $(-\infty, 2-\sqrt{2})$ and $(2+\sqrt{2}, \infty)$
(b) State the open intervals on which f is concave down: $(2-\sqrt{2}, 2+\sqrt{2})$

